author | Rodrigo Campos
<rodrigo@sdfg.com.ar> 2010-09-10 04:21:28 UTC |
committer | Rodrigo Campos
<rodrigo@sdfg.com.ar> 2010-09-10 04:21:28 UTC |
parent | 49b9a488f3c6c72141bb62d39555248043622370 |
informe/desarrollo.lyx | +4 | -4 |
diff --git a/informe/desarrollo.lyx b/informe/desarrollo.lyx index a4f1104..6ea8a15 100644 --- a/informe/desarrollo.lyx +++ b/informe/desarrollo.lyx @@ -219,12 +219,12 @@ binomial incremental \begin_layout Standard \begin_inset Formula \[ -(1+x)^{n}=1+{\textstyle \sum_{i=0}^{\infty}}a_{i}\] +{\displaystyle (1+x)^{n}=1+{\displaystyle \sum_{i=0}^{\infty}a_{i}}}\] \end_inset Con, -\begin_inset Formula $a_{i}=\prod_{j=0}^{i}b_{j}$ +\begin_inset Formula $a_{i}={\displaystyle \prod_{j=0}^{i}b_{j}}$ \end_inset y @@ -287,7 +287,7 @@ Otro enfoque que se usó fué el de no realizar las divisiones de las fracciones \begin_layout Standard \begin_inset Formula \[ -\sqrt{2}=1+lim_{n\rightarrow\infty}a_{n}\] +\sqrt{2}=1+\underset{n\rightarrow\infty}{lim}a_{n}\] \end_inset @@ -332,7 +332,7 @@ Finalmente se obtiene: \begin_layout Standard \begin_inset Formula \[ -\sqrt{2}=1+lim_{n\rightarrow\infty}\frac{b_{n}}{c_{n}}\] +\sqrt{2}=1+{\displaystyle \underset{n\rightarrow\infty}{lim}}\frac{b_{n}}{c_{n}}\] \end_inset